
Introduction to R

Vince Melfi

CSTAT workshop, October 28, 2011
Michigan State University

1 Introduction

According to its developers, “R is a language and environment for statistical computing
and graphics.1” As such, R is a very powerful tool for implementing new statistical and
graphical methods, as well as for making non-standard uses of existing methods. For
this reason, cutting-edge research is often first implemented in R, before (sometimes
slowly) making its way to other statistical packages. This is particularly evident in the
area of statistical biology, with the Bioconductor project taking the lead (see http:

//www.bioconductor.org). But R is also becoming a commonly-used tool in finance
(http://www.rmetrics.org) and other areas. A recent article in the New York Times,
entitled Data Analysts Captivated by R’s Power, discusses the adoption of R by leading
firms such as Google, Pfizer, and others. Of course R is widely used by academic
statisticians and other academics who develop new statistical tools.

R started in the early 1990s as a modest project of two statisticians in New Zealand,
Ross Ihaka and Robert Gentleman. It has similarities with the statistical environment
S, developed earlier at Bell Labs, and the commercial software S-Plus, which is built
on the S base. Because R is freely available under the GNU General Public License,
many other statisticians and programmers began contributing to R in the late 1990s,
and it quickly developed into a powerful and robust tool.

1.1 Installing R

It’s easy to install R on a variety of computers. We’ll concentrate on installing R on
computers running Microsoft Windows. For other operating systems, the instructions
below will need a few minor modifications.

1. Go to http://www.r-project.org. This is the home page for the R project.

2. On the left side of the page will be a link called CRAN right under the words
“Download, Packages.” Click on this link.

3. You’ll be faced with a list of many web servers from which you can download R.
Choose one of these, preferably one in the US.

4. Near the top of the page will be a section titled “Download and install R.” Click
on the Windows link in this section. (This is where users of other operating
systems would make a different choice.)

5. In the subsequent window, click on the base link, and then click on the link
Download R 2.13.2 for Windows to download the setup program to your
computer. There are also installation instructions in case they’re needed. The
setup program is currently called R-2.13.2-win32.exe. The name changes as
new versions of R appear.

6. Double click the setup program on your computer to install R.

1See http://www.r-project.org/about.html

2

1.2 Working directory and starting R

As with any software, it’s useful to keep information from a single session, or several
related sessions, in a single directory. There are several ways to do this with R, but
the following is probably the best. First create the directory. Then create a shortcut
to R in this directory. One way to do this is to find R on the Start menu, but instead
of left clicking on it, right click and choose Copy. Then go to the prepared directory
and paste the copy there, creating a shortcut. There’s one more step: Right click on
the shortcut and choose Properties. Under Start in: type or paste the full path to
the directory you’re in. Then when you start R by double clicking the shortcut, it will
automatically use the prepared directory as the working directory.

If you’re running R and aren’t sure what the working directory is set to, just type
getwd() in your R session. When R starts you will see a large window titled RGui
with some menus and clickable icons visible. Inside the RGui window will be a window
titled R Console. This is where commands are typed and where text output is written.

1.3 Getting Help

There is a help function in R, and also a web-based help interface that allows easier
searching and other functionality. For example, if help for the median() function is
desired, typing help(median) within R. The resulting help page is shown in Figure 1.

The function help.start() opens a web-based interface that is often more infor-
mative than the help() function alone. The web interface has a search functionality
that is useful if the user knows what he wants R to do, but doesn’t know the function
name. For example, suppose a user wants to know how to compute standard deviation
in R, but doesn’t know the appropriate function name. The user can search for “stan-
dard deviation” in the web interface and quickly learn that sd() is the appropriate
function.

1.4 Packages

Functions and datasets in R are often provided as part of a package. For example,
the stats package contains functions for commonly used statistical procedures; the
cluster package contains functions for cluster analysis; and the affy package contains
functions for analysis of Affymetrix microarrays. Some packages are included in the
default R distribution and are loaded into any R session by default (for example, the
stats package), while others must be installed and loaded by the user.

The library() command (with no arguments) lists the packages that are installed.
Of these, some may be loaded for use, and others may not. The search() command
lists those packages that are loaded. Output of these commands will vary depending
on the installation.

Packages can be installed either at the command line or via a menu under Windows.
To install packages via the menu option, use Packages > Install Packages. You may
first be prompted to choose a package repository. Choose one close to home. After

3

median(stats) R Documentation

Median Value

Description

Compute the sample median.

Usage

median(x, na.rm = FALSE)

Arguments

x an object for which a method has been defined, or a numeric vector containing the
values whose median is to be computed.

na.rm a logical value indicating whether NA values should be stripped before the
computation proceeds.

Details

This is a generic function for which methods can be written. However, the default method
makes use of sort and mean, both of which are generic, and so the default method will
work for most classes (e.g. "Date") for which a median is a reasonable concept.

Value

The default method returns a length-one object of the same type as x, except when x is
integer of even length, when the result will be double.
If there are no values or if na.rm = FALSE and there are NA values the result is NA of the
same type as x (or more generally the result of x[FALSE][NA]).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language.
Wadsworth & Brooks/Cole.

See Also

quantile for general quantiles.

Examples

median(1:4)# = 2.5 [even number]
median(c(1:3,100,1000))# = 3 [odd, robust]

[Package stats version 2.7.2 Index]

Figure 1: Output of help(median)

4

this, a list of available packages is shown. Choose one and click OK, and the package
will be installed on your system.2

At this point the package still is not available in your R session. To use the package,
use the Packages > Load Package menu. [Or use the library() function.] There
are ways to automatically load desired packages when the R session starts. Consult R
documentation for details.

1.5 Further resources

Working through the examples in this document will give a basic understanding of R,
but (as with learning any complex piece of software) there will be much more to learn to
be proficient in using R. There are many introductory R sessions and R demonstrations
available. In addition, there are many books (both free online and for purchase) that
help users to learn R, both in general and for specific (e.g., biological applications)
purposes. You may find it worthwhile to go through one or more of these at some
point, to gain more familiarity with R and its capabilities. Ideally you’ll do this with
some specific applications in mind. Here are a few possibilities (all free):

• A brief (76 pages) but quite informative introduction to R written by Emmanuel
Paradis is at http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.
pdf.

• The introductory session in Appendix A of An Introduction to R by W.N. Ven-
ables, D.M. Smith, and the R Development Core Team, avaliable at http:

//cran.r-project.org/doc/manuals/R-intro.pdf.

• A demonstration of some of R’s graphics capabilities, available within any R
session by typing the command demo(graphics).

• Several manuals (some covering rather arcane aspects of R) are at http://cran.
r-project.org/manuals.html.

• Contributed documentation (including the Paradis document referred to above),
most in English but some in other languages, is at http://cran.r-project.

org/other-docs.html.

For issues related to data, there are two important sources. One is the R Data Im-
port/Export manual, available at http://cran.r-project.org/doc/manuals/R-data.
pdf. The other is the book Data manipulation with R by Phil Spector. For graphics,
the book R Graphics by Paul Murrell is fundamental. In addition, the R for beginners
manual by Emmanuel Paradis referred to above has interesting information on both
data and graphics. All four of these are listed in the references at the end of this
document.

2This usually works. For Bioconductor packages, there is a different method. Consult the Biocon-
ductor home page at http://www.bioconductor.org for instructions.

5

There are also a lot of other resources on the internet, but it’s not always easy to
find these resources using a search engine like google, since if a search string such as
“linear regression R” is given, google doesn’t know that the “R” refers to the statistical
software R, but will also find pages where “R” refers to the correlation coefficient.
For this reason there are some search engines devoted solely to indexing information
about R. Two of these that are worth a look are http://www.rseek.org and http:

//search.r-project.org.

6

2 Data structures in R

Throughout the document some sections are starred. These sections may
be omitted the first time through if necessary.

As with any statistical software, facility with bringing data into the program, ex-
porting data to other programs, and manipulating data, are basic skills that usually
take more time and effort than the actual data analysis. R has several structures for
data, including vectors, matrices, data frames, and lists. (In addition, there are spe-
cialized data structures for particular types of data, e.g., gene expression microarray
data or time series data. But understading the three basic data structures vectors,
matrices, and data frames, is a good starting point.)

2.1 Data vectors

A vector can be thought of as a way to store the values of one variable. There are a
variety of ways to enter data into R at the keyboard, including spreadsheet-like inter-
faces. We’ll focus on methods for entering data through the console window interface,
which are the most useful to know. Throughout much of our work with data we will use
a small economic data set for illustration. The data are displayed in Table 1, and give
the per-capita Gross National Product and the percent of the population employed in
agriculture in 1994 for 12 countries in the European Union. We’ll first enter the GNP

Country GNP AGRIC
Belgium 16.8 2.7
Denmark 21.3 5.7
Germany 18.7 3.5
Greece 5.9 22.2
Spain 11.4 10.9
France 17.8 6.0
Ireland 10.9 14.0
Italy 16.6 8.5
Luxembourg 21.0 3.5
Netherlands 16.4 4.3
Portugal 7.8 17.4
United Kingdom 14.0 2.3

Table 1: Data on per capita GNP and percent of population employed in agriculture
for members of the European Union in 1994

values:

> GNP = c(16.8, 21.3, 18.7, 5.9,

+ 11.4, 17.8, 10.9, 16.6, 21,

+ 16.4, 7.8, 14)

> GNP

7

[1] 16.8 21.3 18.7 5.9 11.4 17.8 10.9

[8] 16.6 21.0 16.4 7.8 14.0

> AGRIC = c(2.7, 5.7, 3.5, 22.2,

+ 10.9, 6, 14, 8.5, 3.5, 4.3,

+ 17.4, 2.3)

> AGRIC

[1] 2.7 5.7 3.5 22.2 10.9 6.0 14.0

[8] 8.5 3.5 4.3 17.4 2.3

Notice a few things. First, we chose the name GNP for the data values. Second, the R
function c() is used to concatenate several data values into one vector. Third, to see
what is in an object like GNP, just type its name. Fourth, when R displays the values
in an object like GNP, it indicates in square brackets the position of the first data value
displayed on a line. For example the [8] next to the data value 16.6 indicates that
this is the eighth data point in the GNP data vector. Also, names of objects in R are
case-sensitive, as the following shows:

> gnp

Error: object "gnp" not found

> Gnp

Error: object "Gnp" not found

> gNP

Error: object "gNP" not found

> GNP

[1] 16.8 21.3 18.7 5.9 11.4 17.8 10.9

[8] 16.6 21.0 16.4 7.8 14.0

The GNP object contains numbers. Data vectors also can contain character data or
logical data. We’ll discuss logical data later. For character data, for example, we can
enter the countries associated with the data in GNP. We’ll use the official abbreviations
for the countries to save some typing.

> countries = c("BE", "DK", "DE", "GR", "ES", "FR", "IE",

+ "IT", "LU", "NL", "PT", "UK")

> countries

[1] "BE" "DK" "DE" "GR" "ES" "FR" "IE" "IT" "LU" "NL" "PT" "UK"

Note that the values are specified in quotes, to tell R that these are character values.

8

5 10 15 20

10
15

20

AGRIC

G
N

P

BE

DK

DE

GR

ES

FR

IE

IT

LU

NL

PT

UK

Figure 2: A scatter plot of the percent of the population employed in agriculture versus
the per capita gross national product for twelve countries

2.1.1 Factors*

A plot of AGRIC verus GNP is shown in Figure 2. The four countries in the lower right
seem to be separate from the other eight, having both relatively high percents of the
population in agriculture and relatively small per-capita GNPs. It might be useful to
have a variable that is set to one for the four countries in the lower right, and set to
two for the other eight countries. Here is a first attempt:

> twogroups = c(2, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2)

> twogroups

[1] 2 2 2 1 1 2 1 2 2 2 1 2

This is OK, but a careless user might think that the values 1 and 2 have some quantita-
tive significance, rather than just specifying category membership. Making twogroups

a factor variable is what’s needed. We’ll change the name to help emphasize the
differences.

> fac.twogroups = factor(twogroups)

> fac.twogroups

[1] 2 2 2 1 1 2 1 2 2 2 1 2

Levels: 1 2

9

> mean(twogroups)

[1] 1.666667

> mean(fac.twogroups)

[1] NA

2.2 Matrices

We have created three vector objects, GNP, AGRIC, and countries, related to the data
from Table 1. It would be nice to have a data structure that can contain more then one
variable. Matrices are one such data structure. The R functions matrix(), rbind(),
and cbind(), are all useful for creating matrices. First we’ll use the matrix() function
to create a matrix with four rows and three columns containing the integers from 1
through 12. Rather than typing the twelve numbers in explicitly, we’ll use 1:12, which
returns all twelve numbers.

> mat1 = matrix(data = 1:12, nrow = 4, ncol = 3)

> mat1

[,1] [,2] [,3]

[1,] 1 5 9

[2,] 2 6 10

[3,] 3 7 11

[4,] 4 8 12

Note that we specified the values to be entered in the matrix via the data argument,
the number of rows via the nrow argument, and the number of columns via the ncol

argument. (Of course since there are 12 data values, once we specified the number of
rows we didn’t need to specify the number of columns.)

In mat1 the matrix was filled “by column,” i.e., the first column was filled with the
first four numbers, the second column was filled with the next four numbers, etc. We
can change this behavior by using the byrow argument:

> mat2 = matrix(data = 1:12, nrow = 4, ncol = 3, byrow = T)

> mat2

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

[4,] 10 11 12

Now let’s create a matrix with the GNP data in the first column and the AGRIC data
in the second column:

10

> euromat = matrix(data = c(GNP, AGRIC), nrow = 12)

> euromat

[,1] [,2]

[1,] 16.8 2.7

[2,] 21.3 5.7

[3,] 18.7 3.5

[4,] 5.9 22.2

[5,] 11.4 10.9

[6,] 17.8 6.0

[7,] 10.9 14.0

[8,] 16.6 8.5

[9,] 21.0 3.5

[10,] 16.4 4.3

[11,] 7.8 17.4

[12,] 14.0 2.3

The rbind() and cbind() functions provide a somewhat easier and more intuitive way
to join together several equal length data vectors into a matrix:

> euromat2 = cbind(GNP, AGRIC)

> euromat2

GNP AGRIC

[1,] 16.8 2.7

[2,] 21.3 5.7

[3,] 18.7 3.5

[4,] 5.9 22.2

[5,] 11.4 10.9

[6,] 17.8 6.0

[7,] 10.9 14.0

[8,] 16.6 8.5

[9,] 21.0 3.5

[10,] 16.4 4.3

[11,] 7.8 17.4

[12,] 14.0 2.3

> euromat3 = rbind(GNP, AGRIC)

> euromat3

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

GNP 16.8 21.3 18.7 5.9 11.4 17.8 10.9 16.6 21.0 16.4 7.8 14.0

AGRIC 2.7 5.7 3.5 22.2 10.9 6.0 14.0 8.5 3.5 4.3 17.4 2.3

11

2.2.1 All elements of matrices are the same type

Consider the following example:

> euromat4 = rbind(GNP, countries)

> euromat4

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

GNP "16.8" "21.3" "18.7" "5.9" "11.4" "17.8" "10.9" "16.6" "21"

countries "BE" "DK" "DE" "GR" "ES" "FR" "IE" "IT" "LU"

[,10] [,11] [,12]

GNP "16.4" "7.8" "14"

countries "NL" "PT" "UK"

Note that the elements of GNP were converted to character values. In R, all elements
of a matrix have to be of the same type, such as character, integer, etc. If vectors
of different types are combined as in the example above, R will change them all to
one type. There are specific rules for deciding which type takes precedence. (See
help(rbind), for example, for the rules.) A good rule of thumb is to avoid what we
did above, combining vectors of different types in a matrix.

But this presents a problem. For example, our data set has several types of data.
The country names are character. The GNP and AGRIC values are numerical. And
there is a factor variable indicating membership in the two groups. For representing a
data set, a data frame is often a better choice than a matrix.

2.3 Data Frames

Data frames are the most common way to organize several variables in a data set.
Unlike matrices, the variables don’t all have to be of the same type. Here we create a
data frame containing the GNP, AGRIC, countries, and fac.twogroups variables.

> euro.data = data.frame(countries = countries, percapGNP = GNP,

+ percAGRIC = AGRIC, grouping = fac.twogroups)

> euro.data

countries percapGNP percAGRIC grouping

1 BE 16.8 2.7 2

2 DK 21.3 5.7 2

3 DE 18.7 3.5 2

4 GR 5.9 22.2 1

5 ES 11.4 10.9 1

6 FR 17.8 6.0 2

7 IE 10.9 14.0 1

8 IT 16.6 8.5 2

9 LU 21.0 3.5 2

10 NL 16.4 4.3 2

12

11 PT 7.8 17.4 1

12 UK 14.0 2.3 2

The function data.frame() creates a data frame out of its arguments. Note that
the name before the = sign is the name to be given to the varible in the data frame,
and the name after the = sign is the object containing the data for the variable. So
countries = countries tells R to call a variable countries in the data frame and
to fill this with the values in the variable countries that was created earlier. And
percapGNP = GNP tells R to create a variable called percapGNP in the data frame and
to fill this with the values in the variable GNP that was created earlier.

At this point you may wonder why R has matrices, since a data frame seems a lot like
a matrix, but allows different types of variables. But R has powerful matrix functions
that operate on matrices with numerical entries, that are of great use in statistical
analysis. Examples include matrix algebra functions such as matrix multiplication,
transpose, etc., computing eigenvalues, and much more.

2.4 Naming objects and cleaning up the R workspace

Names of objects in R should be chosen with some care. Of course it is good to
choose names that are informative. It is probably better to use AGRIC than x for the
percentage of the population employed in agriculture. In addition, names of objects
that are already defined in R should be avoided. As an example, c is the name of the
concatenate function that we have used several times to create vectors. So naming a
vector c would be unwise. Usually if a name is informative it won’t already be chosen,
but it’s a good idea to check first. Here’s an example: Suppose a user is thinking of
using the name consumption for a variable, and is also thinking of using the word
solve for another variable.

> consumption

Error: object "consumption" not found

> solve

function (a, b, ...)

UseMethod("solve")

<environment: namespace:base>

The message Error: object "consumption" not found tells the user that there isn’t
an object named consumption, so this is a safe name to use. But the fact that this
isn’t indicated about solve tells the user that another name should be found. (Don’t
worry about understanding what the message means.)

Objects can build up quickly in the R workspace. The function ls() lists the
objects in the workspace, and the function rm() removes objects. For example, here
are the objects in an R session:

> ls()

[1] "AGRIC" "countries" "euro.data" "euromat"

13

[5] "euromat2" "euromat3" "euromat4" "fac.twogroups"

[9] "GNP" "heightframe" "heights" "heights1"

[13] "heights2" "heights3" "mat1" "mat2"

[17] "newlist" "newlist2" "twogroups"

Now we remove twogroups and mat1:

> rm(twogroups, mat1)

> ls()

[1] "AGRIC" "countries" "euro.data" "euromat"

[5] "euromat2" "euromat3" "euromat4" "fac.twogroups"

[9] "GNP" "heightframe" "heights" "heights1"

[13] "heights2" "heights3" "mat2" "newlist"

[17] "newlist2"

Of course it is possible to ask R to list only certain objects, for example, those whose
names start with the letter m, and to remove only certain objects. To do this effectively
requires some understanding of so-called regular expressions, which would take us too
far afield, but here is one simple example, listing all objects whose names begin with
the letter e:

> ls(pattern = "^e")

[1] "euro.data" "euro.lm" "euromat" "euromat2" "euromat3"

[6] "euromat4"

2.5 Saving R objects

During the R session the objects created are not saved to disk unless this is explicitly
requested. The R workspace can be saved to disk by selecting File > Save Workspace
when the R console window is active. By default this will save the objects into a file
called .Rdata in the working directory. In addition, when the R session is terminated
either by typing q() in the R console window or by selecting File > Exit, the user is
asked whether he or she wants to save the workspace. If this is not done, the objects
created will not be available when R is restarted.

2.6 Lists*

Data frames are rectangular, i.e, all columns in a data frame must have the same
number of elements. This makes sense for representing certain kinds of data, but is
sometimes not flexible enough for more complex data. Lists provide a data structure
that does not have this limitation. (In fact, a data frame is just a special type of list.)

Consider the following:

> newframe = data.frame(x = c(1, 2, 3), y = c(2, 3, 5, 7), z = "dog")

Error in data.frame(x = c(1, 2, 3), y = c(2, 3, 5, 7), z = "dog") :

arguments imply differing number of rows: 3, 4, 1

14

Instead of using a data frame, we need to use a list:

> newlist = list(x = c(1, 2, 3), y = c(2, 3, 5, 7), z = "dog")

> newlist

$x

[1] 1 2 3

$y

[1] 2 3 5 7

$z

[1] "dog"

Lists are quite flexible. Components of a list can even be other lists:

> newlist2 = list(onelist = newlist, gg = function(x, y) {

+ x^2 * y

+ }, hh = c(1, 2, 2))

> newlist2

$onelist

$onelist$x

[1] 1 2 3

$onelist$y

[1] 2 3 5 7

$onelist$z

[1] "dog"

$gg

function (x, y)

{

x^2 * y

}

$hh

[1] 1 2 2

3 Subscripting R objects

Data analysis often requires selecting and possibly altering specific variables, or specific
cases. For example, it may be necessary to correct an error in the height measurement

15

of the third subject. Or it may be desired to select the first and third variables for all
subjects who are male. Or data may need conversion from degrees Celsius to degrees
Fahrenheit. R has a powerful subscripting capability for this purpose.

3.1 Simple subscripting

Selecting specific elements of vectors and matrices is simple. Here are some examples:

> GNP

[1] 16.8 21.3 18.7 5.9 11.4 17.8 10.9 16.6 21.0 16.4 7.8 14.0

> GNP[4]

[1] 5.9

> length(GNP)

[1] 12

> GNP[length(GNP)]

[1] 14

> GNP[length(GNP) - 4]

[1] 16.6

> GNP[-4]

[1] 16.8 21.3 18.7 11.4 17.8 10.9 16.6 21.0 16.4 7.8 14.0

> GNP[1:5]

[1] 16.8 21.3 18.7 5.9 11.4

> GNP[-c(1, 3, 5, 7)]

[1] 21.3 5.9 17.8 16.6 21.0 16.4 7.8 14.0

> GNP[]

[1] 16.8 21.3 18.7 5.9 11.4 17.8 10.9 16.6 21.0 16.4 7.8 14.0

16

Note that the index or indices of the element(s) to be selected is placed inside square
brackets. So GNP[4] selects the fourth element of GNP, while GNP[1:5] selects the first
through fifth elements of GNP. The expression inside the brackets can be simple or
complex. If a negative sign is put in front of the expression, R removes the specified
elements. So GNP[-4] removes the fourth element, and returns the others. Note also
that if there is nothing inside the square brackets, then R returns all the elements of
the object.

Next is an example using a matrix.

> euromat

[,1] [,2]

[1,] 16.8 2.7

[2,] 21.3 5.7

[3,] 18.7 3.5

[4,] 5.9 22.2

[5,] 11.4 10.9

[6,] 17.8 6.0

[7,] 10.9 14.0

[8,] 16.6 8.5

[9,] 21.0 3.5

[10,] 16.4 4.3

[11,] 7.8 17.4

[12,] 14.0 2.3

> euromat[1, 2]

[1] 2.7

> euromat[1:5, 2]

[1] 2.7 5.7 3.5 22.2 10.9

> euromat[1,]

[1] 16.8 2.7

> euromat[1, -2]

[1] 16.8

> euromat[, 1]

[1] 16.8 21.3 18.7 5.9 11.4 17.8 10.9 16.6 21.0 16.4 7.8 14.0

Note that in all the cases above, the object returned is just a vector.
Next, an example using a data frame:

17

> euro.data

countries percapGNP percAGRIC grouping

1 BE 16.8 2.7 2

2 DK 21.3 5.7 2

3 DE 18.7 3.5 2

4 GR 5.9 22.2 1

5 ES 11.4 10.9 1

6 FR 17.8 6.0 2

7 IE 10.9 14.0 1

8 IT 16.6 8.5 2

9 LU 21.0 3.5 2

10 NL 16.4 4.3 2

11 PT 7.8 17.4 1

12 UK 14.0 2.3 2

> euro.data[1, 3]

[1] 2.7

> euro.data[1:4, 1:2]

countries percapGNP

1 BE 16.8

2 DK 21.3

3 DE 18.7

4 GR 5.9

> euro.data[, 1:2]

countries percapGNP

1 BE 16.8

2 DK 21.3

3 DE 18.7

4 GR 5.9

5 ES 11.4

6 FR 17.8

7 IE 10.9

8 IT 16.6

9 LU 21.0

10 NL 16.4

11 PT 7.8

12 UK 14.0

> euro.data[-c(1, 3, 5, 7),]

18

countries percapGNP percAGRIC grouping

2 DK 21.3 5.7 2

4 GR 5.9 22.2 1

6 FR 17.8 6.0 2

8 IT 16.6 8.5 2

9 LU 21.0 3.5 2

10 NL 16.4 4.3 2

11 PT 7.8 17.4 1

12 UK 14.0 2.3 2

Of course, especially for a data set with many variables, we shouldn’t have to
remember the column number of each variable. R also allows referring to the columns
by name.

> euro.data["percapGNP"]

percapGNP

1 16.8

2 21.3

3 18.7

4 5.9

5 11.4

6 17.8

7 10.9

8 16.6

9 21.0

10 16.4

11 7.8

12 14.0

> euro.data[c("percapGNP", "countries")]

percapGNP countries

1 16.8 BE

2 21.3 DK

3 18.7 DE

4 5.9 GR

5 11.4 ES

6 17.8 FR

7 10.9 IE

8 16.6 IT

9 21.0 LU

10 16.4 NL

11 7.8 PT

12 14.0 UK

19

> euro.data[c("percapGNP", "countries")][1:3,]

percapGNP countries

1 16.8 BE

2 21.3 DK

3 18.7 DE

In addition, the “dollar sign operator” extracts a vector from a data frame:

> euro.data$percapGNP

[1] 16.8 21.3 18.7 5.9 11.4 17.8 10.9 16.6 21.0 16.4 7.8 14.0

> euro.data$countries

[1] BE DK DE GR ES FR IE IT LU NL PT UK

Levels: BE DE DK ES FR GR IE IT LU NL PT UK

> cbind(euro.data$percapGNP, euro.data$countries)

[,1] [,2]

[1,] 16.8 1

[2,] 21.3 3

[3,] 18.7 2

[4,] 5.9 6

[5,] 11.4 4

[6,] 17.8 5

[7,] 10.9 7

[8,] 16.6 8

[9,] 21.0 9

[10,] 16.4 10

[11,] 7.8 11

[12,] 14.0 12

Note that there are subtle differences. For example, using
euro.data[c("percapGNP", "countries")] returns a data frame with the two speci-
fied columns, while cbind(euro.data$percapGNP, euro.data$countries) returns a
matrix.

3.2 Logical vectors and subsetting

Vectors can have “logical” data taking the values FALSE and TRUE:

> c(1, 2, 3, 4, 5) < c(2, 2, 3, 5, 4)

[1] TRUE FALSE FALSE TRUE FALSE

20

> c(1, 2, 3, 4, 5) == c(2, 2, 3, 5, 4)

[1] FALSE TRUE TRUE FALSE FALSE

> bigAGRIC = AGRIC > 3.5

> bigAGRIC

[1] FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE

[12] FALSE

Note that the comparison operators such as < compare each element of the first vector to
the corresponding element of the second vector. Note that to test for equality, the oper-
ator == (two equal signs in a row) is used. In the statement bigAGRIC = AGRIC > 3.5

the object to the right of the greater than sign is a vector of length one, while the
object to the left is a vector of length 12. In this case R “recycles” the object of smaller
length, comparing each element of AGRIC to 3.5. In the next example a vector of
length 10 is compared to a vector of length 2. The two elements of the smaller vector
are recycled 5 times, leading to the same result as comparing the vector on the left to
c(1,2,1,2,1,2,1,2,1,2)

> c(1, 2, 1, 4, 2, 3, 4, 2, 1, 3) > c(1, 2)

[1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE

Using logical vectors for comparisons can be very powerful. For example, consider
the following data on 54 types of hot dogs, and their calorie and sodium contents. The
data are stored on a web server, and the first command below reads the data into R.
(We’ll learn more about the read.table() function below.)

> hotdogs = read.table("http://www.stt.msu.edu/~melfi/cstat/hotdogs.txt",

+ header = T)

> hotdogs[1:5,]

Type Calories Sodium

1 Beef 186 495

2 Beef 181 477

3 Beef 176 425

4 Beef 149 322

5 Beef 184 482

It may be of interest to compare the calorie content of high-sodium hot dogs to the
calorie content of lower sodium hot dogs.

> hotdogs$Calories[hotdogs$Sodium < 400]

[1] 149 158 139 148 152 111 141 131 149 135 132 147 146 139 136 153

[17] 107 138 132 102 106 94 87 99 86

21

> hotdogs$Calories[hotdogs$Sodium >= 400]

[1] 186 181 176 184 190 175 153 190 157 173 191 182 190 172 175 179

[17] 195 135 140 129 102 107 113 135 142 143 152 146 144

> median(hotdogs$Calories[hotdogs$Sodium < 400])

[1] 136

> median(hotdogs$Calories[hotdogs$Sodium >= 400])

[1] 172

Related to this, the cut() function can create a factor variable that classifies another
variable based on its magnitude. For example, we can classify the hot dogs by sodium
content into low (0-350 mg), medium (350-500 mg), and high (500 and above mg)
sodium content as follows:

> cut(hotdogs$Sodium, breaks = c(0, 350, 500, 700), labels = c("low",

+ "medium", "high"))

[1] medium medium medium low medium high medium low medium

[10] medium low low medium medium high medium low low

[19] low low medium high medium high medium medium medium

[28] medium high medium medium medium low high medium medium

[37] low medium medium medium medium medium high medium medium

[46] high high medium high medium high high high high

Levels: low medium high

By default the cut() function does not include the left endpoint of the interval, so for
example “medium” hot dogs have more than 350 and at most 500 mg of sodium. It
would be more useful for the factor variable to be part of the data frame, as follows:

> hotdogs$sodlevel = cut(hotdogs$Sodium, breaks = c(0,

+ 350, 500, 700), labels = c("low", "medium", "high"))

> hotdogs[1:10,]

Type Calories Sodium sodlevel

1 Beef 186 495 medium

2 Beef 181 477 medium

3 Beef 176 425 medium

4 Beef 149 322 low

5 Beef 184 482 medium

6 Beef 190 587 high

7 Beef 158 370 medium

8 Beef 139 322 low

9 Beef 175 479 medium

10 Beef 148 375 medium

22

3.3 Sorting data*

It is also quite common to want to sort data. For a vector this is trivial, but it is a bit
more complex for a data frame. Consider a (fictitious) data set on heights and weights
of 10 men.

> htwt = read.table("http://www.stt.msu.edu/~melfi/cstat/htwt.txt",

+ header = T, stringsAsFactors = F)

> htwt

subj.names hts wts

1 John 71 162

2 James 72 156

3 Allen 66 145

4 Leroy 70 148

5 Zebulon 72 161

6 Egbert 72 165

7 Eric 67 155

8 Anders 68 154

9 Wayne 72 149

10 Mario 65 145

To order the data in increasing order of heights, we would want the 10th case (Mario)
first, then the third case (Allen), then the eigth case (Anders), and so on. We could
do this “by hand.” Note that for those whose heights are tied at 72, we left them in
the original order.

> htwt.ordered = htwt[c(10, 3, 7, 8, 4, 1, 2, 5, 6, 9),

+]

> htwt.ordered

subj.names hts wts

10 Mario 65 145

3 Allen 66 145

7 Eric 67 155

8 Anders 68 154

4 Leroy 70 148

1 John 71 162

2 James 72 156

5 Zebulon 72 161

6 Egbert 72 165

9 Wayne 72 149

Clearly we don’t want to do this by hand in general. The order() function does the
hard work for us:

> order(htwt$hts)

23

[1] 10 3 7 8 4 1 2 5 6 9

This tells us that the 10th case has the smallest height, followed by the third, then the
seventh, then the eighth, and so on. We can use this to reorder the whole dataset:

> htwt.ordered = htwt[order(htwt$hts),]

> htwt.ordered

subj.names hts wts

10 Mario 65 145

3 Allen 66 145

7 Eric 67 155

8 Anders 68 154

4 Leroy 70 148

1 John 71 162

2 James 72 156

5 Zebulon 72 161

6 Egbert 72 165

9 Wayne 72 149

In this case there are ties in the heights, so it makes sense to specify a second variable
to be used to break the ties. For the ties, it might be better to order these based on
the weights. We can do this by specifying a second argument to order():

> order(htwt$hts, htwt$wts)

[1] 10 3 7 8 4 1 9 2 5 6

> htwt.ordered = htwt[order(htwt$hts, htwt$wts),]

> htwt.ordered

subj.names hts wts

10 Mario 65 145

3 Allen 66 145

7 Eric 67 155

8 Anders 68 154

4 Leroy 70 148

1 John 71 162

9 Wayne 72 149

2 James 72 156

5 Zebulon 72 161

6 Egbert 72 165

24

3.4 Adding to a data frame*

Quite commonly data frames must be augmented either with more cases (i.e, more
rows) or more variables (i.e., more columns). Either is easy to accomplish, but some
care must be taken. Consider the htwt data frame again, and suppose that another
subject, Roger, has entered the study, and that his height is 70 inches and his weight
is 179 pounds. His data can be added to the data frame either via rbind() or via
indexing. We’ll use indexing. We might think that htwt[11,] = c("Roger", 70,

179) would be a good idea. But remember that elements of vectors all have to be of
the same type, so in this case the numbers would be converted to be characters, and
the whole data frame would become character. So we need to do the following:

> htwt[11, 1] = "Roger"

> htwt[11, 2:3] = c(70, 179)

> htwt

subj.names hts wts

1 John 71 162

2 James 72 156

3 Allen 66 145

4 Leroy 70 148

5 Zebulon 72 161

6 Egbert 72 165

7 Eric 67 155

8 Anders 68 154

9 Wayne 72 149

10 Mario 65 145

11 Roger 70 179

If we wanted to use rbind() we would just write htwt = rbind(htwt, data.frame(subj.names

= "Roger", hts = 70, wts = 179)).
Several methods, including use of cbind(), can add variables to a data frame. We’ll

use what seems to be the most natural method here. Suppose we want to add a column
giving the body mass index (BMI) for each person in the htwt data frame. The BMI
is defined as

BMI = (wt× 703)/(ht2),

where weight is measured in pounds and height in inches.

> htwt$BMI = (htwt$wts * 703)/(htwt$hts * htwt$hts)

> htwt

subj.names hts wts BMI

1 John 71 162 22.59195

2 James 72 156 21.15509

3 Allen 66 145 23.40106

25

4 Leroy 70 148 21.23347

5 Zebulon 72 161 21.83314

6 Egbert 72 165 22.37558

7 Eric 67 155 24.27378

8 Anders 68 154 23.41306

9 Wayne 72 149 20.20583

10 Mario 65 145 24.12663

11 Roger 70 179 25.68102

3.5 Mathematical functions*

Of course R has a full range of mathematical functions including basics like addition,
subtraction, logarithms, trigonometric functions, as well as functions for computing
minimums, maximums, sums, cumulative sums, and the like. It would take many
pages to list all the mathematical functions built in to R.

Many R functions expect vectors as arguments. Consider the following examples:

> GNP + AGRIC

[1] 19.5 27.0 22.2 28.1 22.3 23.8 24.9 25.1 24.5 20.7 25.2 16.3

> GNP * AGRIC

[1] 45.36 121.41 65.45 130.98 124.26 106.80 152.60 141.10 73.50

[10] 70.52 135.72 32.20

> GNP/AGRIC

[1] 6.2222222 3.7368421 5.3428571 0.2657658 1.0458716 2.9666667

[7] 0.7785714 1.9529412 6.0000000 3.8139535 0.4482759 6.0869565

> log(GNP)

[1] 2.821379 3.058707 2.928524 1.774952 2.433613 2.879198 2.388763

[8] 2.809403 3.044522 2.797281 2.054124 2.639057

> sum(GNP)

[1] 178.6

> min(GNP)

[1] 5.9

> cumsum(GNP)

[1] 16.8 38.1 56.8 62.7 74.1 91.9 102.8 119.4 140.4 156.8 164.6

[12] 178.6

> cumprod(GNP)

[1] 1.680000e+01 3.578400e+02 6.691608e+03 3.948049e+04 4.500776e+05

[6] 8.011380e+06 8.732405e+07 1.449579e+09 3.044116e+10 4.992351e+11

[11] 3.894034e+12 5.451647e+13

26

4 Data import and export*

If pressed for time, all of Section 4 may be omitted at first reading.
Importing data into R and exporting data from R are covered in Chapter 2 of

Spector [1] and in R development core team [4]. We will focus on read.table()

for getting data into R and write.table() for exporting data. Of course there are
other methods that are discussed in the two references, and there are also specialized
methods developed for particular types of data. As an example, the bioconductor
project includes a large number of functions for reading in biological data such as data
from gene expression microarray studies.

4.1 Reading data into R using read.table*

The read.table() function is the workhorse for reading data into R. We have used it
above to read some data sets into R, and now will look more carefully at how it works.
At its simplest, the user need only specify the name of the “file” containing the data.
Note that the file may be specified, for example, via a URL. The function read.table()

always creates a data frame. Consider the hot dog data set. It is contained in a file
called hotdogs.txt, and the first few lines of the file look like this:

Type Calories Sodium

Beef 186 495

Beef 181 477

Beef 176 425

Beef 149 322

Beef 184 482

The top line of the file contains the names of the variables, and each subsequent line
coontains the value of each variable for one observation. Values are separated by spaces.
We used the following command to read the data into a data frame called hotdogs.

> hotdogs = read.table("http://www.stt.msu.edu/~melfi/cstat/hotdogs.txt",

+ header = T)

> hotdogs[1:3,]

Type Calories Sodium

1 Beef 186 495

2 Beef 181 477

3 Beef 176 425

The second argument, header=T, tells R that the first line of the file contains variable
names. The first argument specifies the location of the file, in this case a url pointing
to a file on a web server.

Consider now the file census1.txt which is on the same web server. Here are the
first few lines of that file:

27

stateno,state,region,pop,poplt5,pop5_17,pop18p,pop65p

2,Alaska,West,401851,38949,91796,271106,11547

50,Wyoming,West,469557,44845,100708,324004,37175

45,Vermont,NE,511456,35998,109320,366138,58166

8,Delaware,South,594338,41151,125444,427743,59179

Again the first line contains variable names and the subsequent lines contain variable
values, but this time the values are separated by commas rather than spaces. So we
add the sep="," argument to the command.

> census1 = read.table("http://www.stt.msu.edu/~melfi/cstat/census1.txt",

+ header = T, sep = ",")

> census1[1:3,]

stateno state region pop poplt5 pop5_17 pop18p pop65p

1 2 Alaska West 401851 38949 91796 271106 11547

2 50 Wyoming West 469557 44845 100708 324004 37175

3 45 Vermont NE 511456 35998 109320 366138 58166

Sometimes files have other information at the top before the variable names and data
begin. This can be handled by the skip argument, which is set to the number of
lines to be skipped. (The default is skip=0.) There are many other arguments to
allow the reading of a variety of file formats. Consult the help for read.table() for
details. By default read.table() converts character variables into factors. Usually
this doesn’t present problems, but sometimes users do not want this behavior, so there
is an argument to override this default. Here is an example:

> htwt = read.table("http://www.stt.msu.edu/~melfi/cstat/htwt.txt",

+ header = T, stringsAsFactors = F)

> htwt[1:3,]

subj.names hts wts

1 John 71 162

2 James 72 156

3 Allen 66 145

The stringsAsFactors=F argument tells R not to convert all character variables into
factors.

4.2 Data export via write.table()*

The function write.table() is the export counterpart to read.table(). It can be
used to export data in a format that other statistical packages can read. Let’s first use
it to write the euro.data data frame to a file.

> euro.data[1:3,]

28

countries percapGNP percAGRIC grouping

1 BE 16.8 2.7 2

2 DK 21.3 5.7 2

3 DE 18.7 3.5 2

> write.table(euro.data, "euro.data.r", sep = " ")

This will write the data from the data frame into a file called euro.data.r in the
working directory of the R session. Of course other locations can be specified. Here
are the first few lines of the resulting file:

"countries" "percapGNP" "percAGRIC" "grouping"

"1" "BE" 16.8 2.7 "2"

"2" "DK" 21.3 5.7 "2"

"3" "DE" 18.7 3.5 "2"

There is a surprise. The first line has the four variable names. But each subsequent
row has a number in quotes before the first variable value. By default write.table()
writes out row names. In this case, the row names are just the row numbers. Often we
don’t want this, so we need to specify row.names=F.

The other commonly used argument is sep. For example, it’s reasonably easy to
read comma-delimited data into Microsoft Excel. To export a version of euro.data
for input to Excel, the following would work:

> write.table(euro.data, "euro.data.csv", sep = ",", row.names = F)

Here are the first few lines of the resulting file.

"countries","percapGNP","percAGRIC","grouping"

"BE",16.8,2.7,"2"

"DK",21.3,5.7,"2"

"DE",18.7,3.5,"2"

4.3 Direct import and export*

There is an R library called foreign which contains functions for importing and ex-
porting directly from and to other statistical packages. For example, it contains a
function read.mtp that reads Minitab portable worksheets. In most cases it is better
to use text-based formats such as comma-delimited files for import and export. Indeed
the R Data Import/Export manual in several places gives advice to avoid trying to
read and write directly from and to other statistical packages.

5 Statistical Analyses

Of course it is possible to perform a wide variety of statistical analyses in R, either
using the default packages, or additional packages installed by the user. These range

29

from the very simple and common, such as computing summary statistics like means,
medians, standard deviations, and the like, to more specialized and computationally
intensive analyses such as clustering.

5.1 Linear Regression Models

We’ll focus on linear regression models. There is a data set built in to R that has
information on population, per capita income, illiteracy rate, life expectancy, murder
rate, percent of high school graduates, mean number of days with minimum tempera-
ture below freezing, and land area for the 50 states in the United States. The data are
mainly from the early 1970s. First read in the data and convert it to a data frame (it’s
a matrix when read in). The command data(state) reads in several data sets. The
one we’ll use is called state.x77.

> data(state)

> state.x77 = data.frame(state.x77)

> state.x77[1,]

Population Income Illiteracy Life.Exp Murder HS.Grad Frost

Alabama 3615 3624 2.1 69.05 15.1 41.3 20

Area

Alabama 50708

The lm() function is used to fit linear regression models. Here’s how to fit a simple
linear regression model with Life.Exp as the response variable and HS.Grad as the
predictor.

> state.lm.1 = lm(Life.Exp ~ HS.Grad, data = state.x77)

> state.lm.1

Call:

lm(formula = Life.Exp ~ HS.Grad, data = state.x77)

Coefficients:

(Intercept) HS.Grad

65.73965 0.09676

A wide variety of models can be specified. The simplest, with one predictor and one
response, is specified as response ~ predictor. Some other possibilities include

• response ~ predictor - 1 for a simple linear regression model through the
origin.

• response ~ predictor1 + predictor2 + predictor3 for the usual multiple
regression model with 3 predictors.

• log(response) ~ predictor for a model with log-transformed response.

30

See help(formula) for a general description of formulas for specifying models. The
same syntax is used whether specifying linear regression models, generalized linear
models, analysis of variance models, etc.

The linear model object contains a wealth of information. Here are a few ways
to extract some of this information. See help(lm) for more details on the quantities
computed when an lm object is created.

> summary(state.lm.1)

Call:

lm(formula = Life.Exp ~ HS.Grad, data = state.x77)

Residuals:

Min 1Q Median 3Q Max

-3.01867 -0.67517 -0.07538 0.64483 2.17311

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 65.73965 1.04748 62.760 < 2e-16 ***

HS.Grad 0.09676 0.01950 4.961 9.2e-06 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.103 on 48 degrees of freedom

Multiple R-squared: 0.339, Adjusted R-squared: 0.3252

F-statistic: 24.61 on 1 and 48 DF, p-value: 9.196e-06

> anova(state.lm.1)

Analysis of Variance Table

Response: Life.Exp

Df Sum Sq Mean Sq F value Pr(>F)

HS.Grad 1 29.931 29.931 24.615 9.196e-06 ***

Residuals 48 58.368 1.216

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> resid(state.lm.1)

Alabama Alaska Arizona Arkansas

-0.68600972 -2.88381740 -0.81164630 1.05945999

California Colorado Connecticut Delaware

-0.08708466 0.13712203 1.32155828 -0.96297201

Florida Georgia Hawaii Idaho

31

-0.16944385 -1.12827487 1.87065019 0.37288399

Illinois Indiana Iowa Kansas

-0.68944385 0.02152693 1.11126603 1.04417836

Kentucky Louisiana Maine Maryland

0.63492971 -1.06309740 -0.64264842 -0.58041462

Massachusetts Michigan Minnesota Mississippi

0.42964807 -0.21879666 1.64673574 -1.61698050

Missouri Montana Nebraska Nevada

0.22825966 -0.90808679 1.12223681 -3.01867128

New Hampshire New Jersey New Mexico New York

-0.08326426 0.11023256 -0.76103046 -0.28912025

North Carolina North Dakota Ohio Oklahoma

-0.25507029 2.17311354 -0.06750230 0.68732024

Oregon Pennsylvania Rhode Island South Carolina

0.58450195 -0.16721005 1.67049346 -1.43733544

South Dakota Tennessee Texas Utah

1.18282130 0.32560824 0.57372938 0.64812415

Vermont Virginia Washington West Virginia

0.37511779 -0.28497625 -0.16417234 -0.28503895

Wisconsin Wyoming

1.46670440 -1.53611389

The fitted line is also easy to plot. The resulting plot is given in Figure 3.

> plot(state.x77$HS.Grad, state.x77$Life.Exp, xlab = "high school grad. rate",

+ ylab = "life expectancy")

> abline(state.lm.1)

5.2 Inference in regression

Of course it is reasonably easy to obtain confidence intervals and perform tests of
hypotheses in the context of regression in R. We’ll focus on hypothesis tests here. This
will be done in the context of the state.x77 dataset.

5.2.1 Model comparison two ways

Consider two models. The first includes HS.Grad and Murder as predictors, while the
second includes Income, Frost, HS.Grad, and Murder as predictors. Note that the
smaller model is a “submodel” of the larger, that is, it is obtained from the larger by
eliminating some predictors. This is important for the F testing methodology. The
F statistic for testing the null hypothesis that the smaller model is correct versus the
alternative hypothesis that the larger model is correct is given by

F =
(RSSsmall −RSSlarge)/(dfsmall − dflarge)

RSSlarge/dflarge
.

32

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

40 45 50 55 60 65

68
69

70
71

72
73

high school grad. rate

lif
e

ex
pe

ct
an

cy

Figure 3: A plot of the state.x77 data along with the fitted least squares regression
line

This has a null F (dfsmall − dflarge, dflarge) distribution. First we fit the two models:

> state.lm.small = lm(Life.Exp ~ HS.Grad + Murder, data = state.x77)

> state.lm.large = lm(Life.Exp ~ HS.Grad + Murder + Income +

+ Frost, data = state.x77)

Now we compute the residual sums of squares for the two models, and the F statistic,
and compute the p-value. The resid() function returns the residuals from the model.

> RSS.small = sum(resid(state.lm.small) * resid(state.lm.small))

> RSS.large = sum(resid(state.lm.large) * resid(state.lm.large))

> RSS.small

[1] 29.77036

> RSS.large

[1] 25.1893

> Fstat = ((RSS.small - RSS.large)/(47 - 45))/(RSS.large/45)

> Fstat

[1] 4.091965

33

> 1 - pf(Fstat, 2, 45)

[1] 0.02329281

The F statistic of 4.092 and the resulting p-value of 0.0233 provide reasonably strong
evidence against the null hypothesis.

We’ve computed the various quantities “by hand” above, but the anova() function
does a lot of the work for us.

> anova(state.lm.small, state.lm.large)

Analysis of Variance Table

Model 1: Life.Exp ~ HS.Grad + Murder

Model 2: Life.Exp ~ HS.Grad + Murder + Income + Frost

Res.Df RSS Df Sum of Sq F Pr(>F)

1 47 29.770

2 45 25.189 2 4.5811 4.092 0.02329 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

5.3 More on model formulas and their use in R*

Specifying models using the response ~ predictor notation is useful not only for lin-
ear regression models, but more generally for a wide variety of models in R, including
generalized linear models. So next we’ll gain a bit more comfort with model specifica-
tion. This section takes much from the presentation the “Stem and Tendril” project at
the City University of New York. See http://wiener.math.csi.cuny.edu/st/ and
http://wiener.math.csi.cuny.edu/st/stRmanual/ModelFormula.html.

As we have seen, generally a model is specified in R as response ~ predictors.
For example

y ~ x1 + x2 + x3

specifies a model where the response is y and there are three predictors, x1, x2, and
x3. Here are some more details on adding predictors to the model formula:

• + adds a predictor to a model. For example, y ~ x1 + x2 adds a second predictor
x2 to a model with one predictor x1.

• - removes a predictor from a model.

• : is used for interactions between terms.

• * adds terms and their interactions. For example, y ~ x1 + x2 + x1:x2 and
y ~ x1*x2 specify the same model.

34

• I() is used to “insulate” the arguments from the formula. For example, sup-
pose a model is desired with y as the response and x1 and x2 + x3 as the
two predictors. The model specification y ~ x1 + x2 + x3 isn’t correct, since
this includes x1, x2, and x3 as predictors. The correct model specification is
y ~ x1 + I(x2 + x3).

• The data = argument can be used to specify the data frame in which the vari-
ables are stored.

• The subset = argument can restrict the model to a subset of the cases (rows)
in the data frame.

Some examples come next. These use the mtcars data set, available within R, which
has data on miles per gallon (mpg), number of cylinders (cyl), horsepower (hp), weight
(wt), automatic or manual transmission (am), number of forward gears (gear), among
others. The data come from Motor Trend magazine for 1973-1974 model cars.

> data(mtcars)

> names(mtcars)

[1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am"

[10] "gear" "carb"

> mtcars[1,]

mpg cyl disp hp drat wt qsec vs am gear carb

Mazda RX4 21 6 160 110 3.9 2.62 16.46 0 1 4 4

First, here’s how to fit a linear model with mpg as response and wt as predictor.
There’s nothing new here.

> mpg.wt.lm = lm(mpg ~ wt, data = mtcars)

> anova(mpg.wt.lm)

Analysis of Variance Table

Response: mpg

Df Sum Sq Mean Sq F value Pr(>F)

wt 1 847.73 847.73 91.375 1.294e-10 ***

Residuals 30 278.32 9.28

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Next, we can use the formula notation for scatterplots. The plot is shown in Fig-
ure 4.

> plot(mpg ~ wt, data = mtcars)

35

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

2 3 4 5

10
15

20
25

30

wt

m
pg

Figure 4: Plotting mpg versus wt for the mtcars data.

●●

4 6 8

10
15

20
25

30

factor(cyl)

m
pg

Figure 5: Boxplots of mpg for the various values of cyl for the mtcars data.

Next, separate boxplots of mpg for each value of cyl. We use the factor() function

36

to be sure that cyl is treated as a factor. The plot is shown in Figure 5.

> plot(mpg ~ factor(cyl), data = mtcars)

Next an analysis of variance model to look at the effect of the number of cylinders
on gas mileage is performed. Note that the lm() function can also be used to fit an
analysis of variance model. The output of summary will be different. Try it yourself.

> mpg.cyl.aov = aov(mpg ~ factor(cyl), data = mtcars)

> summary(mpg.cyl.aov)

Df Sum Sq Mean Sq F value Pr(>F)

factor(cyl) 2 824.78 412.39 39.697 4.979e-09 ***

Residuals 29 301.26 10.39

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Look at help(formula) for details on specifying model formulas, and try some
more examples with the mtcars data.

5.4 Another linear regression model*

As another example, consider the data set provided by the statistician Frank Anscombe,
that illustrates the importance of visualizing data and not exclusively relying on sum-
mary statistics in the context of regression.

First we get access to the data, list it, and then plot the variable y1 versus the
variable x1. The plot produced is in Figure 6.

> data(anscombe)

> anscombe

x1 x2 x3 x4 y1 y2 y3 y4

1 10 10 10 8 8.04 9.14 7.46 6.58

2 8 8 8 8 6.95 8.14 6.77 5.76

3 13 13 13 8 7.58 8.74 12.74 7.71

4 9 9 9 8 8.81 8.77 7.11 8.84

5 11 11 11 8 8.33 9.26 7.81 8.47

6 14 14 14 8 9.96 8.10 8.84 7.04

7 6 6 6 8 7.24 6.13 6.08 5.25

8 4 4 4 19 4.26 3.10 5.39 12.50

9 12 12 12 8 10.84 9.13 8.15 5.56

10 7 7 7 8 4.82 7.26 6.42 7.91

11 5 5 5 8 5.68 4.74 5.73 6.89

> plot(anscombe$x1, anscombe$y1, xlab = "x1", ylab = "y1",

+ main = "First Anscombe Data")

37

●

●

●

●

●

●

●

●

●

●

●

4 6 8 10 12 14

4
5

6
7

8
9

10
11

First Anscombe Data

x1

y1

Figure 6: A plot of y1 versus x1 from the Anscombe data, with user-specified axis
labels and main title

Now we’ll fit linear regression models to y1 versus x1, then y2 versus x2, etc., and
look at their fitted intercepts and slopes:

> lm1 = lm(y1 ~ x1, data = anscombe)

> lm2 = lm(y2 ~ x2, data = anscombe)

> lm3 = lm(y3 ~ x3, data = anscombe)

> lm4 = lm(y4 ~ x4, data = anscombe)

> coefficients(lm1)

(Intercept) x1

3.0000909 0.5000909

> coefficients(lm2)

(Intercept) x2

3.000909 0.500000

> coefficients(lm3)

(Intercept) x3

3.0024545 0.4997273

> coefficients(lm4)

38

(Intercept) x4

3.0017273 0.4999091

Note that the fitted regression lines for the four data sets have essentially the same
slopes and intercepts. As plots will soon show, however, the data sets are rather
different. The command par(mfrow=c(2,2)) below tells R that we want four plots
per page, in a 2 by 2 arrangement. The abline function adds the line from a fitted
regression model to the plot. The plots are shown in Figure 7.

> par(mfrow = c(2, 2))

> plot(anscombe$x1, anscombe$y1)

> abline(lm1)

> plot(anscombe$x2, anscombe$y2)

> abline(lm2)

> plot(anscombe$x3, anscombe$y3)

> abline(lm3)

> plot(anscombe$x4, anscombe$y4)

> abline(lm4)

> par(mfrow = c(1, 1))

6 Basics of graphics in R

The graphics capabilities of R are quite powerful; indeed the graphics capabilities are
a big reason for R’s popularity. Most types of plots and charts that we can think of
are already available in R, and if not, can probably be implemented. In addition the
graphics are customizable.

6.1 Initial examples

R has many functions for creating plots, including plot(), barplot(), stripchart(),
boxplot(), etc. A more complete list is given on pp. 40-41 of Paradis [2]. The plot()

function is the workhorse of the bunch, and can produce a variety of plots depending
on the input. Consider the European economic data again.

> euro.data

countries percapGNP percAGRIC grouping

1 BE 16.8 2.7 2

2 DK 21.3 5.7 2

3 DE 18.7 3.5 2

4 GR 5.9 22.2 1

5 ES 11.4 10.9 1

6 FR 17.8 6.0 2

7 IE 10.9 14.0 1

39

●

●

●

●

●

●

●

●

●

●

●

4 6 8 10 12 14

4
5

6
7

8
9

10
11

anscombe$x1

an
sc

om
be

$y
1

●

●

●●

●

●

●

●

●

●

●

4 6 8 10 12 14

3
4

5
6

7
8

9

anscombe$x2

an
sc

om
be

$y
2

●

●

●

●

●

●

●

●

●

●

●

4 6 8 10 12 14

6
8

10
12

anscombe$x3

an
sc

om
be

$y
3

●

●

●

●

●

●

●

●

●

●

●

8 10 12 14 16 18

6
8

10
12

anscombe$x4

an
sc

om
be

$y
4

Figure 7: Plots of the four Anscombe data sets along with their fitted regression lines

8 IT 16.6 8.5 2

9 LU 21.0 3.5 2

10 NL 16.4 4.3 2

11 PT 7.8 17.4 1

12 UK 14.0 2.3 2

A simple scatter plot is produced by

> plot(euro.data$percAGRIC, euro.data$percapGNP)

See Figure 8. Now consider

40

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20

10
15

20

euro.data$percAGRIC

eu
ro

.d
at

a$
pe

rc
ap

G
N

P

Figure 8: A scatter plot produced by the plot command

41

> plot(euro.data$grouping, euro.data$percapGNP)

Since grouping is a factor, R provides side by side boxplots of percapGNP, one for each
level of grouping. See Figure 9. Next, fit a linear model to the data, and plot the

1 2

10
15

20

Figure 9: Side by side box plots produced by the plot command

resulting linear model:

> euro.lm = lm(percapGNP ~ percAGRIC, data = euro.data)

> plot(euro.lm)

This produces four plots relevant to linear models, shown in Figure 10.

7 High level graphics functions

It is useful to divide R graphics functions into high-level functions, which produce
a complete plot, and low-level functions, which add features to an already existing
plot. In this section we investigate customization of plot(), the fundamental high-
level plotting function.3 It is most instructive to do this via examples. We’ll use the

3Much of what we learn about plot() applies to other high-level plotting functions.

42

6 8 10 12 14 16 18

−
6

−
4

−
2

0
2

4

Fitted values

R
es

id
ua

ls

●

●

●
●

●

●

●

●

●

●●

●

Residuals vs Fitted

12

2

9

●

●

●
●

●

●

●

●

●

● ●

●

−1.5 −0.5 0.0 0.5 1.0 1.5

−
2

−
1

0
1

2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

12

2

9

6 8 10 12 14 16 18

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●

●

●

●

●

●

●●

●

Scale−Location
12

2

9

0.0 0.1 0.2 0.3 0.4 0.5

−
2

−
1

0
1

2

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●
●

●

●

●

●

●

● ●

●
Cook's distance

1

0.5

0.5

1

Residuals vs Leverage

12

2

9

Figure 10: Plot of a linear model object produced by the plot command

43

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20

10
15

20

AGRIC

G
N

P

Figure 11: A scatter plot of GNP versus AGRIC, using the default settings

gross national product and percent of population working in agriculture variables from
the European economic data set. The following code creates variables AGRIC and GNP

(just to make them easier to refer to) and then creates the basic scatter plot, using the
default settings, shown in Figure 11.

> AGRIC = euro.data$percAGRIC

> GNP = euro.data$percapGNP

> plot(AGRIC, GNP)

7.1 Overriding the defaults

What if we want the plot characters to be filled squares rather than open circles, if
we want to change the limits on the horizontal and vertical axes, etc.? Next we’ll add
some arguments to the plot command to change the appearance of the plot. The plot
is in Figure 12. Comments follow the R code.

> plot(AGRIC, GNP, xlab = "percent employed in agriculture",

+ ylab = "per capita GNP", xlim = c(0, 30), ylim = c(0,

+ 30), pch = 15, col = "blue", bty = "L", cex = 1.5)

The arguments xlab and ylab set the horizontal and vertical axis labels. The argu-
ments xlim and ylim set the limits on the axes. The argument pch sets the character
used for plotting the points. Some of the possible plotting symbols are shown in Fig-
ure 13. The argument col sets the color of the plotted points. The argument bty

44

sets the type of box (in this case L-shaped). The argument cex expands the plotting
character by a certain amount.4

Of course there are many other arguments to the plot function. The following two
commands will show the arguments for the standard plot() function and the (many)
graphical parameters that are available. The resulting output isn’t included in this
document.

> help(plot.default)

> help(par)

0 5 10 15 20 25 30

0
5

10
15

20
25

30

percent employed in agriculture

pe
r

ca
pi

ta
 G

N
P

Figure 12: A scatter plot of GNP versus AGRIC, with some customized settings

As another example consider data on the brain and body weight of terrestrial ani-
mals. A plot of the data is given in Figure 14.

> brainbody = read.table("http://www.stt.msu.edu/~melfi/cstat/brainbody.txt",

+ header = T)

> brainbody[1:7,]

Animal BodyWeight BrainWeight

1 Mountain Beaver 1.35 8.1

2 Cow 465.00 423.0

3 Grey Wolf 36.33 119.5

4Technically, some of these, such as xlim, are arguments to the plot function, while others, such
as pch, are graphical parameters. Often it won’t hurt to ignore this distinction.

45

0 1 2 3 4 5 6

0
1

2
3

4
5

6

●

●

●

● ● ●

●

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 13: The standard plotting symbols in R

4 Goat 27.66 115.0

5 Guinea Pig 1.04 5.5

6 Diplodocus 11700.00 50.0

7 Asian Elephant 2547.00 4603.0

> plot(brainbody$BodyWeight, brainbody$BrainWeight)

Based on the plot, shown in Figure 14 (or a close look at the data), it may make
sense to take logarithms of brain and body weights. In Figure 15 a plot of the log-
transformed data is given, with some customizations. The R code is below.

> plot(log(brainbody$BodyWeight), log(brainbody$BrainWeight),

+ xlab = "Body Weight", ylab = "Brain Weight", bty = "n",

+ pch = 2, col = "red", main = "Log transformed brain and body weights")

Here bty="n" eliminates the box that is usually put around the plot.

7.1.1 Plot types

By default the plot() command plots points. Other options include connecting the
points by line segments, vertical line segments, etc. Four possibilities in addition to the
default are shown in Figure 16, generated by the R code below. (The mfrow parameter
sets the number of plots per page. This will be explained later.)

46

●

●

●●
● ●

●

●

●

●
●

●

●

●

●

●
●
●
●●●

●●

●

●

●●

●

0 20000 40000 60000 80000

0
10

00
20

00
30

00
40

00
50

00

brainbody$BodyWeight

br
ai

nb
od

y$
B

ra
in

W
ei

gh
t

Figure 14: A scatter plot of brain weight versus body weight for terrestrial animals

0 5 10

0
2

4
6

8

Log transformed brain and body weights

Body Weight

B
ra

in
 W

ei
gh

t

Figure 15: A scatter plot of brain weight versus body weight, log transformed, for
terrestrial animals

47

> par(mfrow = c(2, 2))

> tmpx = seq(-3, 3, 0.01)

> plot(tmpx, dnorm(tmpx, 0, 1), type = "l", xlab = "x",

+ ylab = "density at x", main = "standard normal density")

> rm(tmpx)

> tmpx = 0:20

> plot(tmpx, dbinom(tmpx, 20, 0.4), type = "h", xlab = "x",

+ ylab = "prob of x", main = "binomial probabilities")

> plot(tmpx, pbinom(tmpx, 20, 0.4), type = "s", xlab = "x",

+ ylab = "cdf at x", main = "binomial cdf")

> rm(tmpx)

> tmpx = 1:15

> tmpy = rnorm(15, 5, 1)

> plot(tmpx, tmpy, type = "b", main = "connect the dots")

> rm(tmpx)

> rm(tmpy)

> par(mfrow = c(1, 1))

Some explanations are in order. The dnorm() function computes values of the normal
density function. The dbinom() function computes binomial probabilities, while the
pbinom() function computes binomial cumulative probabilities.

7.2 Other high-level graphics functions*

Our focus has been on plot(), but of course R has other high-level graphics functions.
For several examples see either demo(graphics), demo(persp), and other demos in R,
or Chapters 1 and 2 of Murrell [3]. Here an example of a 3-d perspective plot and a
pie chart are given. The examples are taken from the R help pages.

First, the perspective plot, shown in Figure 17.

> x <- seq(-10, 10, length = 30)

> y <- x

> f <- function(x, y) {

+ r <- sqrt(x^2 + y^2)

+ 10 * sin(r)/r

+ }

> z <- outer(x, y, f)

> z[is.na(z)] <- 1

> persp(x, y, z, theta = 30, phi = 30, expand = 0.5)

Second, a pie chart, shown in Figure 18.

> pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)

> names(pie.sales) <- c("Blueberry", "Cherry", "Apple",

+ "Boston Cream", "Other", "Vanilla Cream")

> pie(pie.sales)

48

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

standard normal density

x

de
ns

ity
 a

t x

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

binomial probabilities

x

pr
ob

 o
f x

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

binomial cdf

x

cd
f a

t x

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10 12 14

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5 connect the dots

tmpx

tm
py

Figure 16: Illustration of different plot types

49

x

y
z

Figure 17: A perspective plot
.

Blueberry

Cherry

Apple

Boston Cream

Other

Vanilla Cream

Figure 18: A pie chart

50

8 Low level graphics functions

Despite their humble-sounding name, low level graphics functions provide a lot of the
power for R graphics. They allow the user to modify and enhance graphics already
created by a high-level graphics function.

8.1 A first example

Consider a relatively simple task first: Plotting the power functions for two different
decision rules, on the same set of axes, to help a reader understand the trade-offs.
Specifically, suppose that we are performing an experiment to assess whether a subject
has ESP. We repeat the following experiment n times:

• Shuffle a standard deck of cards.

• Choose a card at random, and do not show it to the subject.

• Ask the subject to identify the suit (hearts, clubs, spades, or diamonds) of the
chosen card.

Let X represent the number of correct identifications. It is reasonable to model X with
a binomial distribution with parameters n and p, where p represents the probability
that the subject will correctly identify a card’s suit. We want to test

H0 : p ≤ 0.25 versus Ha : p > 0.25.

If our decision rule is to reject H0 if X ≥ k, then the power of the test at parameter
value p is P (X > k) when X has a binomial distribution with parameters n and p.
This is equal to 1 − P (X ≤ k). This is easily computed in R, since the function
pbinom() returns cumulative probabilities for binomial distributions. For example, if
n = 20, p = 0.25, and k = 10, then the power is given by

> 1 - pbinom(10, 20, 0.25)

[1] 0.003942142

A plot of the power function in this case, produced by the R code below, is given in
Figure 19.

> tmpp = seq(0, 1, 0.01)

> tmppower = 1 - pbinom(10, 20, tmpp)

> plot(tmpp, tmppower, type = "l", xlab = "p", ylab = "power")

> rm(tmpp)

> rm(tmppower)

The points() command adds points (or lines) to an existing plot. We’ll use this
to add the power function for the decision rule which rejects H0 if X > 8 to the plot
of the power function we’ve already drawn. The resulting plot is shown in Figure 20.

51

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

po
w

er

Figure 19: The power function when n = 20 and k = 10.

> tmpp = seq(0, 1, 0.01)

> tmppower = 1 - pbinom(10, 20, tmpp)

> plot(tmpp, tmppower, type = "l", xlab = "p", ylab = "power")

> tmppower = 1 - pbinom(8, 20, tmpp)

> points(tmpp, tmppower, type = "l", lty = "dashed")

> rm(tmpp)

> rm(tmppower)

The specification lty="dashed" tells R to draw a dashed line rather than the default
solid line.

Next, maybe we want to draw points representing the powers at p = 0.25, add a
legend indicating that the dashed line corresponds to k = 8 and the solid line corre-
sponds to k = 10, and add a title to the graphic. The resulting graphic is shown in
Figure 21.

> tmpp = seq(0, 1, 0.01)

> tmppower = 1 - pbinom(10, 20, tmpp)

> plot(tmpp, tmppower, type = "l", xlab = "p", ylab = "power")

> tmppower = 1 - pbinom(8, 20, tmpp)

> points(tmpp, tmppower, type = "l", lty = "dashed")

> points(0.25, 1 - pbinom(10, 20, 0.25), pch = 20)

> points(0.25, 1 - pbinom(8, 20, 0.25), pch = 20)

> legend(0.6, 0.4, legend = c("k=10", "k=8"), lty = c("solid",

52

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

po
w

er

Figure 20: The power functions when n = 20 and k = 10 and k = 8.

+ "dashed"))

> title("Power function for two values of k")

> rm(tmpp)

> rm(tmppower)

Before leaving this example, we’ll use it to illustrate that the width of lines can be
changed. Here we draw the same graphic as in Figure 19, but with a much thicker
line. The resulting plot of the power function is shown in Figure 22. Although not
illustrated here, there are even ways to control how the ends of lines are drawn (squared
off, rounded, etc.) and how lines are joined together.

> tmpp = seq(0, 1, 0.01)

> tmppower = 1 - pbinom(10, 20, tmpp)

> plot(tmpp, tmppower, type = "l", lwd = 15, xlab = "p",

+ ylab = "power")

> rm(tmpp)

> rm(tmppower)

8.2 Text in graphics

There are many reasons to add text to graphics. We may want titles, axis labels, text
identifying points, etc. R has sophisticated facilities for these purposes. We’ll illustrate
with a few examples.

53

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

po
w

er

●

●

k=10
k=8

Power function for two values of k

Figure 21: The power functions when n = 20 and k = 10 and k = 8.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

po
w

er

Figure 22: The original power function, drawn with a very thick line.

54

First, recall the plot of the European economic data given in Figure 2. There rather
than plotting symbols like circles or squares, the (abbreviated) country names were used
as plot symbols. The text() command was used. In a very simple use text() takes as
input an x and a y coordinate, and a character string, and places the character string at
the location specified by the coordinates. For example, text(1, 2, labels = "a")

would place the letter a at the point (1, 2). This was the idea used in producing
Figure 2. Here is the code. (The relevant vectors are displayed first for reference.)

> AGRIC

[1] 2.7 5.7 3.5 22.2 10.9 6.0 14.0 8.5 3.5 4.3 17.4 2.3

> GNP

[1] 16.8 21.3 18.7 5.9 11.4 17.8 10.9 16.6 21.0 16.4 7.8 14.0

> countries

[1] "BE" "DK" "DE" "GR" "ES" "FR" "IE" "IT" "LU" "NL" "PT" "UK"

> plot(AGRIC, GNP, type = "n")

> text(AGRIC, GNP, labels = countries)

The first plot() command with type="n" sets up the axes, etc., without plotting any
points. Then the text() command adds the points.

Now suppose that instead of using the country names as plotting symbols, we want
to plot the data as usual, but put the country names below the plotted points. We
again use text(), but this time specify the pos argument to tell R that we want the
text below the specified location. (This can be fine-tuned in a number of ways.) The
graphic is in Figure 23.

> plot(AGRIC, GNP)

> text(AGRIC, GNP, labels = countries, pos = 1, cex = 0.75)

8.3 Other plot annotations

There are many other ways to annotate plots, in addition to using text(). For example,
line segments and arrows can be drawn, rectangles and other polygons can be added,
etc. As usual, a picture is worth a thousand words.

The functions abline() and arrows() can be used to add lines and arrows to a
plot. Four examples are given next, with pictures in Figure 24.

> par(mfrow = c(2, 2))

> plot(AGRIC, GNP)

> euro.lm = lm(GNP ~ AGRIC)

> abline(euro.lm)

55

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20

10
15

20

AGRIC

G
N

P

BE

DK

DE

GR

ES

FR

IE

IT

LU

NL

PT

UK

Figure 23: Data plotted with labels below the plotted points

> plot(AGRIC, GNP)

> abline(h = mean(GNP))

> abline(v = mean(AGRIC), lty = "dashed")

> plot(AGRIC, GNP)

> arrows(AGRIC[5], GNP[5], AGRIC[1], GNP[1], code = 1)

> plot(AGRIC, GNP)

> arrows(AGRIC[5], GNP[5], AGRIC[1], GNP[1], code = 2)

> par(mfrow = c(1, 1))

56

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20

10
15

20

AGRIC

G
N

P

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20

10
15

20

AGRIC

G
N

P

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20

10
15

20

AGRIC

G
N

P

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20

10
15

20

AGRIC

G
N

P

Figure 24: Using abline() and arrows() to annotate graphics

57

References

[1] Phil Spector (2008) Data Manipulation with R, Springer-Verlag, New York,
NY.

[2] Emmanuel Paradis R for Beginners, available at http://cran.r-project.

org/doc/contrib/Paradis-rdebuts_en.pdf.

[3] Paul Murrell (2006), R Graphics, Chapman & Hall/CRC, Boca Raton.

[4] R development core team (2009) R Data Import/Export, available at http:
//cran.r-project.org/doc/manuals/R-data.pdf.

58

